Bucket-Sort

- Let be \(S \) be a sequence of \(n \)
 (key, element) entries with
 keys in the range \([0, N - 1]\)
- Bucket-sort uses the keys as
 indices into an auxiliary array \(B \)
 of sequences (buckets)

 Phase 1: Empty sequence \(S \) by
 moving each entry \((k, o)\) into
 its bucket \(B[k] \)

 Phase 2: For \(i = 0, \ldots, N - 1 \), move
 the entries of bucket \(B[i] \) to the
 end of sequence \(S \)

Analysis:
- Phase 1 takes \(O(n) \) time
- Phase 2 takes \(O(n + N) \) time
- Bucket-sort takes \(O(n + N) \) time

Algorithm \(\text{bucketSort}(S, N) \)

Input sequence \(S \) of (key, element)
items with keys in the range \([0, N - 1]\)

Output sequence \(S \) sorted by
increasing keys

\[
\text{while } \neg S\text{.isEmpty}()
\begin{align*}
 f & \leftarrow S\text{.first()} \\
 (k, o) & \leftarrow S\text{.remove}(f) \\
 B[k]\text{.addLast}((k, o))
\end{align*}
\]

\[
\text{for } i \leftarrow 0 \text{ to } N - 1
\begin{align*}
 \text{while } \neg B[i]\text{.isEmpty}()
 \begin{align*}
 f & \leftarrow B[i]\text{.first()} \\
 (k, o) & \leftarrow B[i]\text{.remove}(f) \\
 S\text{.addLast}((k, o))
 \end{align*}
\end{align*}
\]

Example

- Key range \([0, 9]\)

\[
\begin{array}{cccccccc}
 & 1, c & & 3, a & & 7, d & & 7, g & & 7, e \\
B & \emptyset \\
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9
\end{array}
\]

Phase 1

Phase 2

Properties and Extensions

- **Key-type Property**
 - The keys are used as
 indices into an array
 and cannot be arbitrary objects
 - No external comparator

- **Stable Sort Property**
 - The relative order of
 any two items with the
 same key is preserved
 after the execution of the algorithm

- **Extensions**
 - Integer keys in the range \([a, b]\)
 \- Put entry \((k, o)\) into bucket
 \(B[k - a] \)
 - String keys from a set \(D \) of
 possible strings, where \(D \) has
 constant size (e.g., names of
 the 50 U.S. states)
 \- Sort \(D \) and compute the rank
 \(r(k) \) of each string \(k \) of \(D \)
 in the sorted sequence
 \- Put entry \((k, o)\) into bucket
 \(B[r(k)] \)
Lexicographic Order

- A d-tuple is a sequence of d keys (k_1, k_2, \ldots, k_d), where key k_i is said to be the i-th dimension of the tuple.
- Example:
 - The Cartesian coordinates of a point in space are a 3-tuple.
 - The lexicographic order of two d-tuples is recursively defined as follows:
 $$(x_1, x_2, \ldots, x_d) < (y_1, y_2, \ldots, y_d)$$
 $$x_i < y_i \lor x_i = y_i \land (x_{i+1}, \ldots, x_d) < (y_{i+1}, \ldots, y_d)$$
 - I.e., the tuples are compared by the first dimension, then by the second dimension, etc.

Lexicographic-Sort

- Let C_i be the comparator that compares two tuples by their i-th dimension.
- Let $stableSort(S, C)$ be a stable sorting algorithm that uses comparator C.
- Lexicographic-sort sorts a sequence of d-tuples in lexicographic order by executing d times algorithm $stableSort$, one per dimension.
- Lexicographic-sort runs in $O(dT(n))$ time, where $T(n)$ is the running time of $stableSort$.

Algorithm $lexicographicSort(S)$

Input sequence S of d-tuples
Output sequence S sorted in lexicographic order

for $i \leftarrow d$ downto 1
$stableSort(S, C_i)$

Example:

$(7,4,6)$ $(5,1,5)$ $(2,4,6)$ $(2,1,4)$ $(3,2,4)$
$(2,1,4)$ $(2,4,6)$ $(3,2,4)$ $(5,1,5)$ $(7,4,6)$

Radix-Sort

- Radix-sort is a specialization of lexicographic-sort that uses bucket-sort as the stable sorting algorithm in each dimension.
- Radix-sort is applicable to tuples where the keys in each dimension i are integers in the range $[0, N-1]$.
- Radix-sort runs in time $O(d(nN))$.

Algorithm $radixSort(S, N)$

Input sequence S of d-tuples such that $(0, \ldots, 0) \leq (x_1, \ldots, x_d)$ and $(x_1, \ldots, x_d) \leq (N-1, \ldots, N-1)$ for each tuple (x_1, \ldots, x_d) in S.
Output sequence S sorted in lexicographic order.

for $i \leftarrow d$ downto 1
bucketSort(S, N)

Radix-Sort for Binary Numbers

- Consider a sequence of n b-bit integers $x = x_{b-1} \cdots x_1 x_0$.
- We represent each element as a b-tuple of integers in the range $[0, 1]$ and apply radix-sort with $N = 2$.
- This application of the radix-sort algorithm runs in $O(bn)$ time.
- For example, we can sort a sequence of 32-bit integers in linear time.

Algorithm $binaryRadixSort(S)$

Input sequence S of b-bit integers.
Output sequence S sorted in lexicographic order.

for $i \leftarrow 0$ to $b - 1$
replace the key k of each item (k, x) of S with bit x_i of x
bucketSort(S, 2)
Example

Sorting a sequence of 4-bit integers:

1001 0010 1101 0001
0010 1110 1101 0010
1101 1001 0001 0010
0001 1101 0010 1101
1110 0001 1110 1110