What is a Skip List

- A skip list for a set S of distinct (key, element) items is a series of lists S_0, S_1, \ldots, S_h such that:
 - Each list S_i contains the special keys $+\infty$ and $-\infty$
 - List S_0 contains the keys of S in nondecreasing order
 - Each list is a subsequence of the previous one, i.e., $S_0 \supseteq S_1 \supseteq \ldots \supseteq S_h$
 - List S_h contains only the two special keys

- We show how to use a skip list to implement the dictionary ADT

Search

- We search for a key x in a skip list as follows:
 - We start at the first position of the top list
 - At the current position p, we compare x with $y \leftarrow \text{key}(\text{next}(p))$
 - $x = y$: we return $\text{element}(\text{next}(p))$
 - $x > y$: we "scan forward"
 - $x < y$: we "drop down"
 - If we try to drop down past the bottom list, we return null

- Example: search for 78

Randomized Algorithms

- A randomized algorithm performs coin tosses (i.e., uses random bits) to control its execution
- It contains statements of the type $b \leftarrow \text{random}()$
 - if $b = 0$
 - do A ...
 - else ($b = 1$)
 - do B ...
- Its running time depends on the outcomes of the coin tosses
- We analyze the expected running time of a randomized algorithm under the following assumptions:
 - the coins are unbiased, and
 - the coin tosses are independent
- The worst-case running time of a randomized algorithm is often large but has very low probability (e.g., it occurs when all the coin tosses give "heads")
- We use a randomized algorithm to insert items into a skip list
Insertion

- To insert an entry \((x, o)\) into a skip list, we use a randomized algorithm:
 - We repeatedly toss a coin until we get tails, and we denote with \(i\) the number of times the coin came up heads.
 - If \(i \geq h\), we add to the skip list new lists \(S_{h+1}, \ldots, S_{i+1}\) containing only the two special keys.
 - We search for \(x\) in the skip list and find the positions \(p_0, p_1, \ldots, p_i\) of the items with largest key less than \(x\) in each list \(S_0, S_1, \ldots, S_i\).
 - For each \(j \leq 0, \ldots, i\), we insert item \((x, o)\) into list \(S_j\) after position \(p_j\).

Example: insert key \(15\), with \(i = 2\)

Deletion

- To remove an entry with key \(x\) from a skip list, we proceed as follows:
 - We search for \(x\) in the skip list and find the positions \(p_0, p_1, \ldots, p_i\) of the items with key \(x\), where position \(p_j\) is in list \(S_j\).
 - We remove positions \(p_0, p_1, \ldots, p_i\) from the lists \(S_0, S_1, \ldots, S_i\).
 - We remove all but one list containing only the two special keys.

Example: remove key \(34\)

Implementation

- We can implement a skip list with quad-nodes.
- A quad-node stores:
 - entry
 - link to the node prev
 - link to the node next
 - link to the node below
 - link to the node above
- Also, we define special keys PLUS_INF and MINUS_INF, and we modify the key comparator to handle them.

Space Usage

- The space used by a skip list depends on the random bits used by each invocation of the insertion algorithm.
- We use the following two basic probabilistic facts:
 - **Fact 1:** The probability of getting \(i\) consecutive heads when flipping a coin is \(1/2^i\).
 - **Fact 2:** If each of \(n\) entries is present in a set with probability \(p\), the expected size of the set is \(np\).

- Consider a skip list with \(n\) entries:
 - By Fact 1, we insert an entry in list \(S_i\) with probability \(1/2^i\).
 - By Fact 2, the expected size of list \(S_i\) is \(n/2^i\).
- The expected number of nodes used by the skip list is:
 \[
 \sum_{i=0}^{h} \frac{n}{2^i} = n \sum_{i=0}^{h} \frac{1}{2^i} < 2n
 \]
- Thus, the expected space usage of a skip list with \(n\) items is \(O(n)\).
Height

- The running time of the search and insertion algorithms is affected by the height h of the skip list.
- We show that with high probability, a skip list with n items has height $O(\log n)$.
- We use the following additional probabilistic fact:

 Fact 3: If each of n events has probability p, the probability that at least one event occurs is at most np.

Consider a skip list with n entries:

- By Fact 1, we insert an entry in list S_i with probability $1/2^i$.
- By Fact 3, the probability that list S_i has at least one item is at most $n/2^i$.
- By picking $i = 3\log n$, we have that the probability that $S_{3\log n}$ has at least one entry is at most $n/2^{3\log n} = n/n^3 = 1/n^2$.
- Thus a skip list with n entries has height at most $3\log n$ with probability at least $1 - 1/n^2$.

Search and Update Times

- The search time in a skip list is proportional to
 - the number of drop-down steps, plus
 - the number of scan-forward steps.

- The drop-down steps are bounded by the height of the skip list and thus are $O(\log n)$ with high probability.
- To analyze the scan-forward steps, we use yet another probabilistic fact:

 Fact 4: The expected number of coin tosses required in order to get tails is 2.

Thus, the expected number of scan-forward steps is $O(\log n)$.

- We conclude that a search in a skip list takes $O(\log n)$ expected time.
- The analysis of insertion and deletion gives similar results.

Summary

- A skip list is a data structure for dictionaries that uses a randomized insertion algorithm.
- In a skip list with n entries:
 - The expected space used is $O(n)$.
 - The expected search, insertion and deletion time is $O(\log n)$.
- Using a more complex probabilistic analysis, one can show that these performance bounds also hold with high probability.
- Skip lists are fast and simple to implement in practice.
- When we scan forward in a list, the destination key does not belong to a higher list.
 - A scan-forward step is associated with a former coin toss that gave tails.
 - By Fact 4, in each list the expected number of scan-forward steps is 2.
 - Thus, the expected number of scan-forward steps is $O(\log n)$.
 - We conclude that a search in a skip list takes $O(\log n)$ expected time.
 - The analysis of insertion and deletion gives similar results.